
A collaborative infrastructure for handling syntactic annotations

Éric Villemonte de la Clergerie
INRIA - Rocquencourt - B.P. 105

78153 Le Chesnay Cedex, FRANCE
Eric.De_La_Clergerie@inria.fr

Abstract

We believe that collaborative annotating is
needed to build and improve large syntacti-
cally annotated corpora such as tree banks or
dependency banks. We present such a col-
laborative infrastructure, implemented as a
WEB service in the context of the French
project Passage whose primary objective is
the automatic syntactic annotating of a large
corpus over 100 millions words.

1 Introduction

The work presented in this paper takes place in the
context of Passage (Produire des annotations syn-
taxiques à grande échelle – Large Scale Production
of Syntactic Annotations), a 3-years French action1

(2007–2009) that includes the following tasks:

• automatically annotating a 100 million words
French corpus using 10 parsers;

• merging the resulting annotations using a rover,
in order to get better quality annotations;

• manually building a reference annotated sub-
corpus (around 500 000 words), starting from
the rover annotations. It should allow us to
assess the quality of the rover and to prepare
freely available data for the community;

• running linguistic knowledge acquisition ex-
periments on the rover annotations;

• running two parsing evaluation campaigns on
the model of the EASy French evaluation cam-
paign (Paroubek et al., 2006). The first cam-
paign, to be run at the end of 2007 should pro-
vide data to calibrate the rover. The second

1The PASSAGE project is supported by the French National
Research Agency (ANR-06-MDCA-013)

campaign, at the end of Passage (2009), should
provide information about the evolutions of the
parsers during the project.

Passage requires a solid infrastructure to handle
very large syntactically annotated corpora. Given
the various tasks to be accomplished, the infrastruc-
ture has to provide many functionalities for han-
dling annotations, such as storing, viewing, query-
ing, comparing, editing, revising, downloading, up-
loading, Furthermore, Passage involves around
10 distinct teams, which suggests using a collab-
orative infrastructure providing sufficient computa-
tional power. This power may not be locally avail-
able, given the size of the corpus.

Others have already promoted the notion of col-
laborative annotating (Balasubramanya et al., 2006;
Artola et al., 2004; Ma et al., 2002) but we believe
this notion is also important for the following rea-
son. We are well aware that syntactically annotat-
ing a corpus is a difficult and tedious task, best ac-
complished by experts following a precise protocol.
However, these experts are rare while a larger set
of people may prepare (possibly automatically) an-
notated data for a majority of simple cases, the ex-
perts being mainly consulted for validation and for
handling the difficult cases. A collaborative infras-
tructure may help to involve more actors, specially
if they have nothing to install.

A WEB service on the model of WIKIPEDIA

seems a good option. The actors would start brows-
ing annotations and, in a natural way, should get the
possibility to signal errors and, even better, to cor-
rect them. Another pertinent model is provided by
bug reporting systems such as BUGZILLA, allow-
ing people to report and discuss bugs, and experts

to handle them. A last pertinent model is version-
ing systems such as SUBVERSION allowing people
to commit revisions to some central place.

Of course, one may argue that understanding and
editing syntactic annotations is a much more com-
plex task than reading and editing a wikipedia page.
The difficulties arise from the linguistic subtleties
but also from the richness of syntactic annotations.
They are complex to visualize, potentially involv-
ing long distance phenomena. Good annotation
guides and rigorous protocols are needed to reduce
the amount of errors. However, many errors may
also be avoided by designing a system that presents
information in an adapted way and that cleverly
guides/constrains the annotators in their tasks.

We started developing EASYREF, a prototype of
collaborative annotation management system to cor-
rect the set of reference annotations manually built
for the original EASy parsing evaluation campaign,
because of a relatively high rate of remaining er-
rors. However, we now see its larger potential for
the other tasks in Passage.

Section 2 presents the EASy annotation for-
mat. Section 3 lists some design principles which
have guided the development of EASYREF. Sec-
tion 4 explains how these principles have been
instantiated through the existing functionalities of
EASYREF. Section 5 sketches the possible evolution
of EASYREF in the context of Passage and beyond,
in particular related to the scaling issues.

2 The EASy annotation format

The EASy XML annotation format was designed to
provide information about:

• the segmentation of corpora into sentences;
• the segmentation of sentences into forms;
• non-recursive typed chunks, embedding forms.

Table 1(a) lists the possible types;
• labeled dependencies that are anchored by ei-

ther forms or chunks. All dependencies have
a binary arity but for the ternary COORD de-
pendencies. The 14 kinds of dependencies are
listed in Table 1(b).

The XML format is use to derive the standard
EASy HTML view of the annotations, as shown in
Figure 1 for the sentence Meantime, the tragedy of

Type Explanation
GN Nominal Chunk
NV Verbal Kernel
GA Adjectival Chunk
GR Adverbial Chunk
GP Prepositional Chunk
PV Prepositional non-tensed Verbal Kernel

(a) Chunks

Type Anchors Explanation
SUJ-V suject,verb Subject-verb dep.
AUX-V auxiliary, verb Aux-verb dep.
COD-V object, verb direct objects
CPL-V complement, verb other verb argu-

ments/complements
MOD-V modifier, verb verb modifiers (such

as adverbs)
COMP complementizer, verb subordinate sen-

tences
ATB-SO attribute, verb verb attribute
MOD-N modifier, noun noun modifier
MOD-A modifier, adjective adjective modifier
MOD-R modifier, adverb adverb modifier
MOD-P modifier, preposition prep. modifier
COORD coord., left, right coordination
APPOS first, second apposition
JUXT first, second juxtaposition

(b) Dependencies

Table 1: EASy format

Liberians continues. This view cleverly uses a linear
representation of the sentence and chunks with color
codes to identify quickly the chunk types. On the
other hand, the dependencies are listed in 14 sepa-
rate tables with their anchors provided through their
identifiers. To decode these tables, the reader has to
retrieve the content of an anchor through an indirec-
tion given an identifier.

It should be stressed that an annotated sentence
may represent a lot of information to display: several
tens of forms, almost as many chunks and dependen-
cies with their type, each dependency involving two
or three anchors that may stand relatively far away
in the sentence.

The standard HTML view was also used as the
base to annotate, completed by HTML forms to fill.
The method was tedious and rather error prone, be-
cause the annotators had to explicitly fill the fields
with identifiers.

Although there now exists a good and rather com-
plete EASy annotation guide, it may be noted that
the original annotation of around 4000 sentences
was performed by several teams while stabilizing

Figure 1: Standard HTML view of EASy annotations

the guide. The resulting reference annotation set
is therefore not homogeneous, with some errors re-
lated to evolutions in the guide and divergences of
interpretation among the various teams. Since then,
many errors have been detected by the participants
to the EASy campaign and have been submitted by
mail or as notes. However, these notes were not inte-
grated with a view of the erroneous sentences, mak-
ing difficult their analysis and corrections.

3 Guiding principles

The development of EASYREF was guided by a few
design principles. First, as already advocated, we
opted for a collaborative infrastructure. The idea is
that many people should have a way to access anno-
tated data, to exploit them but also to progressively
improve them. It also facilitates the management for
a coordinator that has to follow the work of several
annotators.

Secondly, the system should be able to present
rich and complex information in a graspable way
for human annotators. The solution seems to use
abstract synthetic views completed by mechanisms
to zoom on more precise information, for instance
when moving over the visual representation of an
entity (including the annotations). Furthermore,
combining abstract global views and more local pre-
cise ones should involve minimal navigational ef-
forts. Another issue concerns the aggregation of
pieces of information that come from several sources

(annotations, reports, corrections, alternate versions,
. . .).

Thirdly, the system should do whatever possible
to reduce the risks of errors, for instance by using
clever and constraining interfaces. In particular, di-
rect interactions with the visual representation of en-
tities (such as forms, chunks, dependencies) should
be preferred over manually typing identifiers. The
use of contextual menus that list only those actions
that are allowed in the current context is also help-
ful. And checking the validity of each action is of
course a strong requirement!

Last but not least, the system should keep traces
by using logs, databases, versioning, . . . with precise
information about actions, dates and authors. These
traces are important to follow the evolution of the
data, possibly providing ways to undo some actions.
The system should clearly also provide ways to ex-
ploit these traces.

Inspired by these principles, EASYREF has been
implemented as a WEB service with AJAX-based
server-client communications.

The server side is implemented in the Perl
CATALYST framework based on the Model-View-
Controller [MVC] paradigm. Persistent data at
the model level are organized following schema
(Database schema or XML-like schema), these
schemata guiding the allowed actions and specify-
ing the integrity conditions to be satisfied (such as

unique identifiers for instance). The controllers are
Perl modules, used to process URL requests and
generate views from the data through the use of tem-
plates. Standard CATALYST modules were used to
handle users, user rights, and user sessions.

On the client side, information is presented
through HTML pages that may be displayed by most
WEB browsers (such as FIREFOX). Cascaded Style
Sheets [CSS] are used to separate structuring from
rendering. To get a smarter client, various actions
have been implemented with Javascript on the client
side. In particular the Javascript library PROTO-
TYPE.JS has been heavily used to establish server-
client communications through AJAX requests. The
answers to these requests may be used to locally up-
date the content of a page, avoiding the need for
a full refresh of the page. The advantages are of
course a reduced bandwidth but also fluid interfaces
that can transparently use the power of the server
side to present contextual information on the client
side.

4 Existing fonctionalities

4.1 Visualizing the annotations

Figure 2 shows a screenshot for EASYREF. The
leftwards sidebar acts as a global menu for access-
ing the various views provided by EASYREF. The
main panel concerns the annotations with the top-
most panel being a form used to query sentences
and the bottom one to display the retrieved anno-
tated sentences.

We have kept the linear representation of the sen-
tences with color-coded chunks above the forms.
The idea was extended for dependencies, repre-
sented on several lines below the forms, using color
codes related to their type. The span of a depen-
dency is given by its anchors. A simple algorithm
is used to reduce the number of lines and to sort the
dependencies according to their span and position
(left-to-right, shortest first). One may select which
kinds of dependencies are to be displayed. At first
glance, it is not possible to precisely identify the
anchors of a dependency and their role. However,
when moving the mouse over a dependency, its an-
chors are highlighted and a tooltip box is displayed,
locally providing more detailed information.

Information is also integrated in the sense that,

for a given sentence, it is possible to show (or hide)
various pieces of information, such as the list of its
bug reports (see section 4.3), the history of its revi-
sions (see section 4.2) and a list of potential errors
automatically detected by EASYREF. The potential
annotation errors are raised when some basic con-
straints are violated, for instance for

• dependencies whose anchors refer to non exist-
ing forms or chunks;

• wrong types on dependency anchors (when
they are chunks);

• dependencies that multiply refer a same chunk
or form.

Sentences may be searched using combined ad-
ministrative and linguistic criteria. For instance, one
may search all the sentences with potential errors
but no bug reports, or sentences with reports but
no corrections. A more linguistic query such as
“\bévaluer@NV \bles@GN” would return all
the sentences where the word “évaluer” (evaluate)
in a NV chunk is followed by “les” (the) in a GN
chunk. Linguistic queries are applied as regular ex-
pressions on a linear representation of both text and
chunk annotations.

4.2 Editing annotations
Following our guiding principles, editing entities
such as chunks or dependencies is done by directly
interacting with their visual representations. Practi-
cally, as illustrated by Figure 3, double-clicking on
a chunk opens, within the chunk, a contextual menu
(provided by the server) listing the possible opera-
tions such as deletion, type change, merging with the
leftwards or rightwards component (chunk or form)
and shrinking (removing the leftmost or rightmost
form in the chunk). Creating a new chunk is done
by double-clicking a form of the future chunk (gen-
erally its head) and then (possibly) extending it.

Because editing a chunk may have an impact on
the dependencies it anchors, EASYREF takes some-
times the responsibility to update them. However, in
a more conservative way, a revision mark is added to
all potentially impacted dependencies. Visually dis-
played (by a ∗), the mark clearly alerts the annotator
that these dependencies should be checked.

Modifying an existing dependency also starts by
double-clicking its visual representation, opening a

Figure 2: Visualizing annotations with EASYREF

Figure 3: Modifying a chunk

contextual menu (Figure 4). Because it was found
to be a frequent error, one possible editing actions
concerns the swap of the anchors for the binary de-
pendencies (and more general permutations for the
ternary COORD dependencies). While the menu

also allows to manually modify the value of a given
anchor (or of an extra parameter), the preferred
and less error-prone alternative consists of double-
clicking onto some chunk or form and to select it as
an anchor for some role in the selected dependency.

Figure 4: Modifying a dependency

Actually, the same idea has been used for creating
new dependencies: the process starts by selecting

the first anchor by double-clicking on a chunk/form,
selecting a type and role in the contextual menu,
then selecting in a similar way the second anchor
and possibly the third one. At the end, as shown
in Figure 5, a menu is displayed, listing all perti-
nent information about the dependency to be created
and asking for creation or cancellation. So, in prac-
tice, all editing actions may be performed by double-
clicking on entities or selecting options in closed
contextual lists, reducing the risks of errors. Still, er-
rors remain possible (such as anchor inversion) but
warnings about potential errors may help.

Figure 5: Creating a new dependency

Each edition action creates a new version of the
sentence with an incremented revision number. The
version is saved as an XML file with an auto-
matically generated comment providing information
about the nature of the action, its author, the date,
. . . . It is possible to browse the various revisions of
a sentence (using navigation arrows) but it is only
possible to edit the last one.

The sentence being edited is locked during the
very brief time where the edition action is validated.
In case of trouble, a surviving lock expires after a
few minutes. The sentence cannot be edited when
locked. More subtly, a sentence is also not editable
if not corresponding to the last revision, for instance
because of an edition made by someone else.

4.3 Handling bug reports

Bug reports may be attached to a sentence. More
precisely, several bug reports may be attached to a
same bug, either because the same problem occurs
several times for distinct sentences or because there
exists a thread of discussion about the bug. The

reports may be seen while browsing the sentences
but also through a dedicated view allowing to search
them according to various criteria. A report model
(with an underlying XML DTD) specifies the fol-
lowing (possibly optional) fields:

id of the report and bug id of the associated bug
localization reference provided by the triple cor-

pus+sentence+revision
author and date of the last edition
status of the report (open, closed, unknown, re-

jected)
type of error (in segmentation, chunk, dependency,

. . .)
diagnostic : description of the problem
pre and post (local) situation before and after cor-

rection
fix : nature of the proposed correction

Already 776 bug reports have been imported
in the system. The Figure 6 shows the (trans-
lated) content of one of them, concerning the
initial revision of sentence E558 in corpus
questions_amaryllis.

ID: 765 BID: 765
LOC: questions_amaryllis:E558:r000
AUTHOR: christelle
DATE: 2007-08-24 11:17:54
STATUS:o (open)
CLASS: GF
TYPE: R (Relation)
DIAG: we have two coordinations and not just one.
PRE: COORD(F1,NV1,F11)
POST: COORD(F1, ,NV)
FIX: it was a binary coordination.

Figure 6: Example of bug report

5 Evolutions

EASYREF is already used but it should be fur-
ther developed during the remaining of the Pas-
sage project. First, the EASy format should be
enriched, in particular to be closer to the emerg-
ing ISO TC37 SC4 standards (Ide et al., 2003).
Forms should be built upon tokens referring spans
of the original documents through standoff pointers,
following the Morphosyntactic Annotation Frame-
work [MAF] (Clément and Villemonte de La Clerg-
erie, 2005). Besides chunks, constituency should

be completed by allowing nested recursive groups
as proposed in the Syntactic Annotation Framework
[SynAF], following the TIGER model. Structured
content represented by feature structures could be at-
tached to forms, groups, and possibly dependencies.
Even with these extensions, visualization and edi-
tion should remain possible, in particular by adapt-
ing the multi-line view for groups (as done for de-
pendencies) and opening entities to display their
content. New functionalities have also to be added
to EASYREF, including:

• downloading raw corpora (possibly resulting
from a search);

• uploading an annotation set, provided by one of
the participating parser to Passage;

• automatic merging of annotation sets (applying
a ROVER);

• comparing two sets of annotations, for instance
between a parser set and the rover one, or be-
tween two revisions of a same set. This func-
tionality is already partially implemented, al-
lowing us to compare the EASy reference set
with the FRMG set (Boullier et al., 2005) as
illustrated in Figure 7. The first line displays
the reference chunks and the second one the
FRMG chunks, with the color code easing the
identification of mismatching chunks. Compar-
ing dependencies is more complex: both sets of
dependencies are actually mixed, the text color
and weight indicating the status of the depen-
dencies, with normal black text indicating the
dependencies that belong to both sets, bold blue
text for those only in the reference set, and red
blue text for those only in the FRMG set;

• building virtual corpora, by saving selections
of sentences. They would be useful to focus on
a specific syntactic phenomena. As a prelim-
inary step in this direction, EASYREF already
allows to build a per-user per-session sentence
selection (available in the sidebar, Figure 2);

• displaying various statistics about the quantity
and quality of annotations, about their evolu-
tion over time, about the rover, . . .

Several issues have also to be addressed, the main
one concerning scalability, with the wish to be able
to handle very large annotated corpora of several
hundred millions words. A first option seems to be

to structure the corpora in units adapted for the var-
ious tasks (viewing, editing, versioning, . . .). We
propose to structure into thematic corpus collec-
tions, corpus, blocks (about a few thousand sen-
tences for processing), segments (about a few tens
of sentences for viewing) and sentences (for editing
and versioning). The second step is to move towards
native XML databases such as XINDICE or EXIST

that provide efficient XPath-based query and update
mechanisms (Bird et al., 2006). Specialized indexes,
for instance based on suffix arrays, may be needed
for efficient content-based queries.

Robustness is another issue to address when run-
ning a centralized collaborative environment that
should not get trapped into unexpected states. An
user cannot easily restart the system and his own ac-
tions may have undesirable impacts on critical data.

The next related issue obviously concerns secu-
rity. The current version of EASYREF implements
a basic user right management, only been tested with
a restricted audience. A larger audience involves a
deeper analysis of the security risks and a more fine-
grained right management component. For instance,
a policy could enforce that a participant can only up-
load, browse and edit its own annotation set while
being allowed to browse the rover set. In the con-
text of an evaluation campaign, a participant should
not be allowed to browse the reference set. The rover
team should be allowed to browse all annotation sets
but only edit the rover set. Similar policies would
also work for manual annotations: two people an-
notating the same corpus, not having access to the
other set, and a supervisor merging the two sets.

The next issue arises from the nature of EASYREF

that requires a live connection to a centralized server,
which may not be always very practical and may
also involve too high an overload on the server. Of-
fline sessions could be an option, either by using a
local program (in particular by adapting existing an-
notating systems) or by deploying several instances
of EASYREF to move forwards a more decentral-
ized peer-to-peer infrastructure(Balasubramanya et
al., 2006). However, in both cases, mechanisms
have to be implemented to synchronize the annota-
tions and to solve the potential conflicts (as done for
versioning systems such as SUBVERSION). It may
be noted that the conflicts may be solved by compar-
ing two sets of annotations, a functionality already

Figure 7: Comparing two annotation sets (reference and FRMG)

partially implemented.

6 Conclusion

We believe that an extended version of EASYREF

will become an important infrastructure in order to
coordinate the efforts of around 10 teams in the
context of the Passage action. Two instances of
EASYREF have already been deployed for the ben-
efit of Passage’s participants, one for correcting the
existing reference annotation set and the other one
to annotate from scratch a small set of 500 new sen-
tences for the 2007 evaluation campaign. We should
very soon activate a public instance to progressively

• make available some sets of annotations, that
could be used to train parsers or run knowledge
acquisition tasks;

• motivate parser developers to download their
annotations and compare them with the exist-
ing ones;

• favor the use of a standardized syntactic repre-
sentation;

• improve the reference annotations, either by us-
ing a rover over the available annotation sets or
by getting manual corrections (even if only for
the simpler cases).

References
X. Artola, A. Diaz de Ilarraza, N. Ezeiza, K. Gojenola*,

A. Sologaistoa, and A. Soroa. 2004. EULIA: a graph-
ical web interface for creating, browsing and editing
linguistically annotated corpora. In proc. of LREC’04.

Magesh Balasubramanya, Michael Higgins, Peter Lucas,
Jeff Senn, and Dominic Widdows. 2006. Collabo-
rative annotation that lasts forever: Using peer-to-peer

technology for disseminating corpora and language re-
sources. In Proc. of the fifth International Conference
on Language Resources and Evaluation (LREC 2006),
Genoa, Italy.

Steven Bird, Yi Chen, Susan B. Davidson, Haejoong Lee,
and Yifeng Zheng. 2006. Designing and evaluating
and XPath dialect for linguistic queries. In 22nd In-
ternational Conference on Data Engineering (ICDE),
pages 52–61, Atlanta, USA.

Pierre Boullier, Lionel Clément, Benoît Sagot, and Éric
Villemonte de La Clergerie. 2005. « simple comme
easy :-) ». In Proceedings of TALN’05 EASy Workshop
(poster), pages 57–60, Dourdan, France. ATALA.

Lionel Clément and Éric Villemonte de La Clergerie.
2005. MAF: a morphosyntactic annotation frame-
work. In proc. of the 2nd Language & Technology
Conference (LT’05), pages 90–94, Poznan, Poland.

N. Ide, L. Romary, and Éric Villemonte de La Clergerie.
2003. International standard for a linguistic annotation
framework. In Proceedings of HLT-NAACL’03 Work-
shop on The Software Engineering and Architecture of
Language Technology. Journal version submitted to
the special issue of JNLE on Software Architecture for
Language Engineering.

Xiaoyi Ma, Haejoong Lee, Steven Bird, and Kazuaki
Maeda. 2002. Models and tools for collaborative an-
notation. In Proc. of LREC’02, Las Palmas, Spain.

Patrick Paroubek, Isabelle Robba, Anne Vilnat, and
Christelle Ayache. 2006. Data, annotations and mea-
sures in EASY - the evaluation campaign for parsers
of french. In ELRA, editor, proc. of LREC’06, pages
315–320, Genoa, Italy.

