
From raw corpus to word lattices: robust pre-parsing processing

Benoît Sagot and Pierre Boullier

INRIA - Projet Atoll
Domaine de Voluceau, Rocquencourt B.P. 105

78153 Le Chesnay Cedex, France
{benoit.sagot,pierre.boullier}@inria.fr

Abstract
We present a robust full-featured architecture to preprocess text before parsing. It converts raw noisy corpus into a word lattice that
will be used as input by a parser. It includes sequentially named-entity recognition, tokenization and sentence boundaries detection,
lexicon-aware named-entity recognition, spelling correction, and non-deterministic multi-words processing, re-accentuation and de-/re-
capitalization. Though our system currently deals with French language, almost all components are in fact language-independent, and
the others can be straightforwardly adapted to almost any inflectional language. The output is a lattice of words that arepresent in the
lexicon. It has been applied on a large scale during a French parsing evaluation campaign, showing both extreme efficiency and very
good precision and recall.

1. Introduction
Pre-processing of raw text before parsing is usually

seen as an easy task on which no further research is worth
doing. However, experiments show that this step is cru-
cial when dealing with real-life corpora, and that available
tools are not always satisfying, for example because they
lack a spelling error correction component, because they
are specialized in some kind of corpus, or because they are
not able to handle non-determinism.

We recently took part to the French parsing evaluation
campaign EASy, and had to parse a set of about 35,000
sentences coming from very diverse corpus (journalistic,
e-mail, medical, legal, oral, literature, and so on) with a
correct to very poor quality. Hence, we had to design a
very robust pre-processing system to turn this extremely
noisy text into individual tokenized sentences,1 with a
minimal loss of information, and without losing the link
between output words2 and original tokens of the corpus.3

We first give an overview of the architecture of our
system. Then we briefly focus on the different compo-
nents, namely named-entity recognition steps, tokeniza-
tion and spelling error correction, and non-deterministic
multi-word identification, re-accentuation and de- or re-
capitalization. We conclude with a brief evaluation of the
system.

2. Overall architecture
The overall architecture of our pre-processing system

is illustrated in Figure 1. During the whole process, input
tokens are stored incomments (surrounded by braces and
decorated with their position in the input string) which are

1Corpora were in fact already splitted into sentences, but only
partly. Hence, we almost ignored this segmentation.

2In this paper, we use the badly defined wordword as a syn-
onym ofword form in the sense of (Clément and de La Clergerie,
2004).

3This is needed to be able to link back the output of the parser
to tokens of the corpus, even if words can cover many input to-
kens, and tokens many words.

immediately followed by the associated word-form.4

raw text

First set of local grammars
(e-mail addresses, URLs, dates,

phone numbers, times, addresses,
numbers in digits, smilies, quoted words,

ponctuation and oral artifacts)

Sentence boundaries detection
and unknown words identification

Preliminary tokenization
and lexicon-aware local grammars

(acronyms with expansion, proper nouns,
sequences in foreign languages)

Tokenization and spelling
error correction

(SXSPELL)

Last set of local grammars
(numbers in letters - including
ordinals and others, and dates)

Lattice builder: non deterministic
multi-word identification, re-accentuation,

and de- or re-capitalization

word lattice

Figure 1: Overall architecture of the system.

For example,
contactez-moi au 1 av. Foch, 75016 Paris, ou par e-

mail à my.name@my-email.com.

4We use the following conventions: an artificial token (e.g.,
a named-entity identifier) starts with a "_" ; in the corpus,
characters "_", "{ " and "}" are replaced by the artificial to-
kens_UNDERSCORE , _O_BRACE and_C_BRACE . Thus,
these three characters are available as meta-characters.

will become, if ignoring ambiguities, something like
{contactez0..1} contactez {-moi1..2} moi {au2..3} à

{au2..3} le {1 av. Foch, 75016 Paris3..9} _ADDRESS {,9..10}
, {ou10..11} ou {par11.12} par {e-mail12..13} e-mail {à13..14} à
{my.name@my-email.com14..15} _EMAIL {.15..16} . {.15..16}
_SENT_BOUND.

3. Sentence boundaries detection and
named-entities recognition

Real-word corpus are not like sentences built by lin-
guists. They include sequences of tokens that are not
analysable at a syntactic nor morphological level, but be-
long to productive patterns, which means that they have
to be identified before spelling error correction. Most of
them are grouped under the termnamed entities (May-
nard et al., 2001). However, we will use this term in a
slightly broader sense, including all such sequences of to-
ken, even if not usually considered as named entities (e.g.,
numbers). We calllocal grammar a grammar recognizing
named-entities of a given family.

We designed a set of large-coverage robust5 local
grammars, implemented asperl programs involving nu-
merous regular expressions.

Some named entities contain characters that are usu-
ally ponctuation marks, most importantly the period (e.g.,
in URLs), but also the comma (e.g., in addresses) and all
kind of other characters (e.g., in smilies). Therefore, some
local grammars must be appliedbefore tokenization, in-
cluding in our system:

e-mail addresseswith detection of erroneous spaces,

URLs with detection of many kinds of errors and formats,

dates including various formats as well as date ranges
(e.g., du 29 au 31 janvier6 will becomedu _DATE
au _DATE , even if29, if isolated, would not be rec-
ognized as a date),

telephone numbers in various formats,

times including several formats as well as time ranges
(e.g.,2-3 heures, 3 ou 4 minutes7, etc.),

addressesin a lot of different formats,

numbers including different formats, as well as ordinals
written with digits (e.g.,2ème – 2nd),

smilies such as:-) or :D,

quoted words : un «test»8 becomesun {«test»} test ,

formatting artifacts to deal with special ponctuation
phenomena (like replacing(...) by a single-word
(...)) and with oral transcription artifacts (repetition
more than twice of the same word, or more than once
if it belongs to a predefined list, removal of hesitation
markers, and so on).

5By robust, we mean that named-entities with errors are also
recognized, likettp:/strange.url.com /index.html .

6from the 29th to the 31st of january
73 or 4 minutes
8a "test"

After the application of these local grammars, we seg-
ment the text in sentences. This task is performed by
a huge set ofperl regular expressions that extends the
basic ideas proposed for example in (Grefenstette and
Tapanainen, 1994), helped by a list of known words con-
taining a period (often abbreviations). It is designed to be
able to handle all kind of false negatives and false positives
that arise in real-life corpus. After this step, the artificial
word _SENT_BOUND represents sentence boundaries.

We then apply the tokenizer and spelling error cor-
recter described in the next section in a degraded way, in
the sense that no spelling error correction is performed,
but the text is tokenized in the same way it would be with
error correction. The aim of this is to identify words in
the input string that can not be analysed as known words
(present in the lexicon oreasily correctable) or combina-
tions of known words (in French, things likel’idée, anti-
Bush or done-m’en, for example,9 are valid combinations
of correctable words –done should bedonne).

Once unknown words are identified (recall thatun-
known means here that it is not tokenizable in a way that
would give only words present in the lexicon or easily cor-
rectable), special local grammars that take this informa-
tion into account are applied. They recognize:

acronyms that are followed or preceded by their expan-
sion, with various typographic possibilities,

proper nouns preceeded by a title (likeDr. or Mr),

phrases in other languagesthan French.

The two last local grammars deserve a special com-
ment. They are based on the following technique. Let
w1 . . . wn be a sentence whose words are thewi’s. We de-
fine a tagging functiont that associates (thanks to regular
expressions) a tagti = t(wi) to each wordwi, where the
ti’s are taken in a small finite set of possible tags (resp. 9
and 12 for the two local grammars). Hence, a sequence
of tagst1 . . . tn is associated tow1 . . . wn. Then, a (huge)
set of finite transducers is performed overt1 . . . tn, trans-
forming it in a new sequencet′

1
. . . t

′

n of tags. If in this
sequence a sub-sequencet

′

i . . . t
′

j matches a given pat-
tern, then the corresponding sequence of wordswi . . . wj

is considered recognized by the grammar.
Let us consider for example the following sentence,
Peu après , le Center for irish Studies publiait . . . ,10

where Center , irish and Studies have been identi-
fied as unknown words. It gets the following tags:
cnpNFFucn. . . (c stands forcapitalized, n for probably
French (default case),p for ponctuation, N for known as
French, F for known as foreign andu for unknown). Reg-
ular expressions on these tags lead tocnpNffffn. . . ,
wheref stands forforeign, meaning thatCenter for irish
Studies is recognized as a phrase in a foreign language.11

The sentence becomes (_FP stands forforeign phrase):
Peu après , le {Center for irish Studies} _FP publiait . . .

9the idea, anti-Bush or give me some
10Soon afterwards, the Center for irish Studies published . . .
11In fact, we also designed a prototype tool to identify the lan-

guage of such a phrase. In this case, the correct answer, English,
is correctly found.

4. Tokenization and spelling error
correction

4.1. An isolated-word corrector: SXSPELL

The next step in our system is the spelling error correc-
tor. Real-life corpus have diverse rate of spelling errors,
that can go from virtually zero (as in literature corpus) to
an extremely high rate (as in e-mail corpus). Moreover,
if they remain uncorrected, misspelled words become un-
known words for the parser. This must be avoided as much
as possible, since they usually get default underspecified
syntactic information, which leads both to low precision
and very high ambiguity at the syntactic level. Therefore,
we designed a spelling error corrector, named SXSPELL.

A lot of work has been done on spelling correction
(see for example the review of (Kukich, 1992)). Tech-
niques used for isolated-word correction mainly fall in
two categories: trained and untrained. Trained techniques
cover stochastic (oftenn-gram based) techniques and neu-
ral nets. Untrained techniques includeminimum edit dis-
tance (based on operations like insertion, deletion, sub-
stitution or swapping) andrule-based techniques (based
on context-sensitive rewriting rules, the origin of which
comes from finite-state phonology). The latter is clearly
more powerful and more adapted to the task,12 but the
cited operations can also be useful as such. Hence, our
corrector is rule-based, but these operations are also avail-
able to build underspecified rules.

Applying a rule is called anelementary correction. We
associate to each rule alocal cost and acomposition cost.
The total cost of a correction is the sum of the local costs
of all elementary corrections, plus, if more that one el-
ementary correction has been performed, the sum of all
composition costs. This allows to have a global cost that
is more than the sum of local costs. The best correction is
of course the one with the lower total cost.

Our purpose was to have an efficient implementa-
tion of these simple techniques, even if used with nu-
merous appropriate rules and a real-size spelling lexicon
(our spelling lexicon for French language has more than
400,000 different inflected forms and parts of multi-word
units). To achieve this goal, we considered the spelling
lexicon as a deterministic finite automatonF , the input
word w as a finite transducerT 0

w , and rewrite rules as fi-
nite transducersT i(i > 0). First, we compute the finite
transducerT all

w of all possible sequences of characters that
can be obtained fromw by applying the rules, and their
costs.13 Then we extract fromT all

w all words that indeed
exist in the lexicon, by intersectingF with T all

w .
The difficulty of this approach is not the underlying

theory, which is well known, but comes from the size of
the automata that we have to handle. Indeed, with a typ-

12A very simple example of that is the following:o andeau
are two possible spellings for the [o] sound in French. Thus,
transformingo into eau is a reasonable rule. It is more natural
and more sensible w.r.t. correction costs, to see this operation as
a replacement ofeau by o than as two deletions followed by a
substitution.

13Of course, a threshold cost can be given as a parameter, thus
preventing from computing too many very costly corrections.

ical number of rules of several hundreds, the automaton
T all

w has easily billions and billions of paths. And it has
to be intersected withF and its 400,000 paths. Therefore,
we extensively used tabulation and compact representation
techniques. One must admit that the feasability of such an
approach was nota priori clear, but we have very good re-
sults, both in terms of quality (with appropriate rules) and
response time (with an appropriate threshold cost).

4.2. In-sentence spelling correction
Spelling error correction can not be performed on a

purely isolated-word basis. Indeed, at least four phenom-
ena involve the environment of a word during recognition
by the lexicon or during its correction:

• words starting with a capital letter,

• words that have initial position in the sentence (which
interacts strongly with the previous point),

• multi-words that are consequence of productive
derivational morphology (e.g.,anti-Bush) or syntac-
tic agglutination (e.g.,préchoisis-t’en,14 that must be
tokenized aspré- / choisis / t’ / en),

• spelling errors that involve more than one token (e.g.,
corre ction instead ofcorrection) or more than one
word (e.g.,unproblème instead ofun problème15).

Hence, we developed a full-featured in-sentence
spelling corrector, which is able to deal with these phe-
nomena and to send queries to SXSPELL, so as to simul-
taneously tokenize and correct the text (we do not correct
capitalized words, but other unknown words can remain
if no correction is found for a word that costs less than a
given threshold). It turned out that the interaction between
tokenization of multi-words, capitalization and spelling
error correction is not easy to deal with, especially when
one deals with the first token of a sentence. However, we
defined some heuristics that give pretty good results.

5. Non-deterministic light spelling
correction and multi-word identification

In many cases, the simple concatenation of words can-
not express the subtleties and ambiguities of natural lan-
guages. Therefore, the output of our process is a lattice (or
DAG, standing for Direct Acyclic Graph) of word-forms
(or words), which can be given as input to our syntactic
parsers.16 Moreover, we do not produce onlysimple DAGs
in the sense of (Barthélemy et al., 2001), because they are
not sufficient (see for example Figure 2).

Let us consider the French phrasepomme de terre
cuite.17 Each word is a valid inflected form, as are the
compound wordspomme de terre andterre cuite.18 There-
fore, it is represented by the DAG shown in Figure 2.

14pre-chose one of them for you
15a problem
16Most classical parsers are not able to handle DAGs as input,

which leads to the need of an extra step before parsing, namely
(super-/hyper-)tagging, which may delete valid alternatives.

17This can mean eithercooked potato, cooked clay apple or
terracotta apple, which leads to the 3 different paths in the graph.

18respectivelypotato andterracotta.

0 1 2 3 4

pomme de terre cuite

pomme_de_terre terre_cuite

Figure 2: DAG associated topomme de terre cuite.

On the contrary, French language (as others) hasag-
glutinates. For example,du is either a valid word (mean-
ing some) or must be decomposed asde le (meaningof
the). It is therefore represented as shown in Figure 3.

0 1 2

de le

du

Figure 3: DAG associated todu.

These operations are performed as follows. The input
of the DAGing step is considered as a (linear) DAGD.
To each compound and to each agglutinate of the lexicon
is associated a transducer. The composition of all these
transducers is applied toD, possibly creating new paths.

The resulting DAG is then passed through other trans-
ducers that create other alternatives. For example, capital-
ized words for which the non-capitalized word is present
in the lexicon are represented as an alternative between
both. Unknown words remaining at this point (including
many capitalized words) and for which adding a diacritic
on some letters leads to a known word are also represented
as an alternative between both.19 Finally, unknown words
in the DAG are all replaced by one of two special entry of
the lexicon,_UW and_uw , according to their capitaliza-
tion. The resulting DAG is the final output.

6. Evaluation
The evaluation of such a system is difficult, because

we lack an appropriate gold-standard corpus. However,
some insights can be given thanks to tests we did on
a 1,100,000-word journalistic corpus.20 The whole pro-
cess21 takes 13’01”, which corresponds approximately to
1400 tokens/sec. Considering the complexity of the per-
formed tasks, and in particular the sizes of the automata
involved in SXSPELL, this is a very good performance.

We also selected a few named-entity families for which
over-generating detectors can be easily designed, so as to
allow a manual validation. Results are shown in Table 1.

The evaluation of the sentence boundary detection
needs a manual annotation. We did it on the first 400 sen-
tences of the corpus, which gives a 100% precision rate
and a 100% recall rate. This is pretty satisfying, consid-
ering the fact that our journalistic corpus is full of quo-

19We also try and correct parts of compound words that do
not exist as standalone words but do not take part one of their
compound words. For example,brac in French exists only as
part of the phrasebric à brac. Thus, un brac has not been
corrected by the previous step, but is corrected here asun bras.

20We did evaluations on the different corpus of the parsing
evaluation campaign cited above, but we are not yet allowed to
publish these results. We can just say that the frequency of de-
tection of named-entities strongly depends on the kind of corpus.

21Test performed on an AMD AthlonTM XP 2100+ (1.7 Ghz)
architecture running Mandrake Linux 10.1.

Named-entity family Occ. Precision Recall

URLs 174 100% 100%
(surface) addresses 35 100% 100%
Phrases in foreign lang.22 42 83% 88%

Table 1: Partial evaluation of named-entities recognition.

tations, footnotes, book references and meta-information
that makes sentence boundary detection pretty difficult.

We do not give any evaluation result for the spelling
error corretor. Indeed, it depends mostly on the quality
of the corpus (rate of rare and foreign words, quality of
the spelling) and even more on the quality of the lexicon,
whose evaluation is not our purpose here. Quantification
of these crossed influences deserves further investigation.

7. Conclusion
We have presented a full-featured architecture that pro-

duces words lattices out of raw text, and is able to han-
dle various phenomena that occur at a high frequency in
real-life corpus. This includes several named-entity fam-
ilies, spelling errors, tokenization ambiguities while de-
tecting sentence and word boundaries, and lexical ambi-
guities between words differing only by diacritics or cap-
italization. Moreover, our system is extremely efficient,
and gives high-quality results. Such a pre-processing is a
crucial step to be able to parse correctly real-life corpus.

Further work include an even better treatment of
derivational morphology, extension of existing named-
entity recognizers and design of new ones, and a few adap-
tations to be compliant to the current ISO working draft
on normalization of morphosyntactic annotation (Clément
and de La Clergerie, 2004), based on XML representation
of tokens, words (or word-forms) and lattices. We also
intend to make the whole system available under a free-
software licence in the near future.

8. References
Barthélemy, François, Pierre Boullier, Philippe De-

schamp, and Éric de La Clergerie, 2001. Guided pars-
ing of range concatenation languages. InProceedings
of ACL’01. Toulouse, France.

Clément, Lionel and Éric de La Clergerie, 2004.
Terminology and other language resources – Morpho-
Syntactic Annotation Framework (MAF). ISO
TC37SC4 WG2 Working Draft.

Grefenstette, Gregory and Pasi Tapanainen, 1994. What is
a word, what is a sentence? Problems of tokenization.
In Proceedings of the 3rd Conference on Computational
Lexicography and Text Research. Budapest, Hungary.

Kukich, Karen, 1992. Techniques for automatically
correcting words in text.ACM Computing Surveys,
24(4):377–439.

Maynard, Diana, Valentin Tablan, Cristian Ursu, Hamish
Cunningham, and Yorick Wilks, 2001. Named entity
recognition from diverse text types. InProceedings of
RANLP 2001. Tzigov Chark, Bulgaria.

22Test performed only on the first 2000 sentences, because
manual annotation is necessary.

