
Constructing parse forests that include exactly then-best PCFG trees

Pierre Boullier1, Alexis Nasr2 and Benôıt Sagot1

1. Alpage, INRIA Paris-Rocquencourt & Université Paris 7
Domaine de Voluceau — Rocquencourt, BP 105 — 78153 Le ChesnayCedex, France

{Pierre.Boullier,Benoit.Sagot}@inria.fr
2. LIF, Univ. de la Méditerrannée

163, avenue de Luminy - Case 901 — 13288 Marseille Cedex 9, France
Alexis.Nasr@lif.univ-mrs.fr

Abstract

This paper describes and compares two al-
gorithms that take as input a shared PCFG
parse forest and produce shared forests
that contain exactly then most likely trees
of the initial forest. Such forests are
suitable for subsequent processing, such
as (some types of) reranking or LFG f-
structure computation, that can be per-
formed ontop of a shared forest, but that
may have a high (e.g., exponential) com-
plexity w.r.t. the number of trees contained
in the forest. We evaluate the perfor-
mances of both algorithms on real-scale
NLP forests generated with a PCFG ex-
tracted from the Penn Treebank.

1 Introduction

The output of a CFG parser based on dynamic
programming, such as an Earley parser (Earley,
1970), is a compact representation of all syntac-
tic parses of the parsed sentence, called ashared
parse forest(Lang, 1974; Lang, 1994). It can rep-
resent an exponential number of parses (with re-
spect to the length of the sentence) in a cubic size
structure. This forest can be used for further pro-
cessing, as reranking (Huang, 2008) or machine
translation (Mi et al., 2008).

When a CFG is associated with probabilistic in-
formation, as in a Probabilistic CFG (PCFG), it
can be interesting to process only then most likely
trees of the forest. Standard state-of-the-art algo-
rithms that extract then best parses (Huang and
Chiang, 2005) produce a collection of trees, los-
ing the factorization that has been achieved by the
parser, and reproduce some identical sub-trees in
several parses.

This situation is not satisfactory since post-
parsing processes, such as reranking algorithms
or attribute computation, cannot take advantage
of this lost factorization and may reproduce some
identical work on common sub-trees, with a com-
putational cost that can be exponentally high.

One way to solve the problem is to prune the
forest by eliminating sub-forests that do not con-
tribute to any of then most likely trees. But this
over-generates: the pruned forest contains more
than then most likely trees. This is particularly
costly for post-parsing processes that may require
in the worst cases an exponential execution time
w.r.t. the number of trees in the forest, such as
LFG f-structures construction or some advanced
reranking techniques. The experiments detailed
in the last part of this paper show that the over-
generation factor of pruned sub-forest is more or
less constant (see 6): after pruning the forest so as
to keep then best trees, the resulting forest con-
tains approximately103n trees. At least for some
post-parsing processes, this overhead is highly
problematic. For example, although LFG parsing
can be achieved by computing LFG f-structures
on top of a c-structure parse forest with a reason-
able efficiency (Boullier and Sagot, 2005), it is
clear that a103 factor drastically affects the overall
speed of the LFG parser.

Therefore, simply pruning the forest is not an
adequate solution. However, it will prove useful
for comparison purposes.

The new direction that we explore in this pa-
per is the production of shared forests that con-
tain exactlythen most likely trees, avoiding both
the explicit construction ofn different trees and
the over-generation of pruning techniques. This
can be seen as a transduction which is applied on

a forest and produces another forest. The trans-
duction applies some local transformations on the
structure of the forest, developing some parts of
the forest when necessary.

The structure of this paper is the following. Sec-
tion 2 defines the basic objects we will be dealing
with. Section 3 describes how to prune a shared
forest, and introduces two approaches for build-
ing shared forests that contain exactly then most
likely parses. Section 4 describes experiments that
were carried out on the Penn Treebank and sec-
tion 5 concludes the paper.

2 Preliminaries

2.1 Instantiated grammars

Let G = 〈N ,T ,P, S〉 be a context-free grammar
(CFG), defined in the usual way (Aho and Ullman,
1972). Throughout this paper, we suppose that we
manipulate only non-cyclic CFGs,1 but they may
(and usually do) includeε-productions. Given a
productionp ∈ P, we notelhs(p) its left-hand
side,rhs(p) its right-hand side and|p| the length
of rhs(p). Moreover, we noterhsk(p), with 1 ≤
k ≤ |p|, the kth symbol of rhs(p). We call A-
production any productionp ∈ P of G such that
lhs(p) = A.

A complete derivation of a sentencew =
t1 . . . t|w| (∀i ≤ |w|, ti ∈ T) w.r.t.G is of the form

S
∗
⇒
G,w

αAβ ⇒
G,w

αX1X2 . . . Xrβ
∗
⇒
G,w

w. By def-

inition, A → X1X2 . . . Xr is a production ofG.
Each ofA, X1, X2, . . . , Xr spans a unique oc-
currence of a substringti+1 . . . tj of w, that can
be identified by the correspondingrange, noted
i..j. A complete derivation represents aparse tree
whose yield isw, in which each symbolX of
rangei..j roots a subtree whose yield isti+1 . . . tj

(i.e., a derivation of the formX ∗
⇒
G,w

ti+1 . . . tj).

Let us define thew-instantiationoperation (or
instantiation). It can be applied to symbols and
productions ofG, and toG itself, w.r.t. a string
w. It corresponds to the well-known intersection
of G with the linear automaton that corresponds
to the stringw. We shall go into further detail for
terminology, notation and illustration purposes.

1Actually, cyclic CFG can be treated as well, but not
cyclic parse forests. Therefore, if using a cyclic CFG which,
on a particular sentence, builds a cyclic parse forest, cycles
have to be removed before the algorithms descibed in the next
sections are applied. This is the case in the SYNTAX system
(see below).

An instantiated non terminal symbolis a triple
notedAi..j whereA ∈ N and0 ≤ i ≤ j ≤ |w|.
Similarly, an instantiated terminal symbolis a
triple notedTi..j whereT ∈ T and0 ≤ i ≤ j =
i + 1 ≤ |w|. An instantiated symbol, terminal or
non terminal, is notedXi..j. For any instantiated
symbolXi..j, i (resp. j) is called itslower bound
(resp. upper bound), and can be extracted by the
operatorlb() (resp.ub()).

An instantiated production(or instantiated
rule) is a context-free productionAi..j →
X1

i1..j1
X2

i2..j2
. . . Xr

ir ..jr
whose left-hand side is an

instantiated non terminal symbol and whose right-
hand side is a (possibly empty) sequence of in-
stantiated (terminal or non terminal) symbols, pro-
vided the followings conditions hold:

1. the indexes involved are such thati = i1, j =
jr, and∀l such that1 ≤ l < r, jl = il+1;

2. the corresponding non-instantiated produc-
tion A → X1X2 . . . Xr is a production of
G.

If lhs(p) = Ai..j, we setlb(p) = i andub(p) = j.
In a complete derivationS ∗

⇒
G,w

αAβ ⇒
G,w

αX1X2 . . . Xrβ
∗
⇒
G,w

w, any symbolX that spans

the rangei..j can be replaced by the instantiated
symbolsXi..j. For example, the axiomS can be
replaced by the instantiated axiomS0..|w| in the
head of the derivation. If applied to the whole
derivation, this operation creates aninstantiated
derivation, whose rewriting operations define a
particular set of instantiated productions. Given
G andw, the set of all instantiated productions in-
volved in at least one complete derivation ofw is
unique, and notedPw. An instantiated derivation
represents aninstantiated parse tree, i.e., a parse
tree whose node labels are instantiated symbols.
In an instantiated parse tree, each node label is
unique, and therefore we shall not distinguish be-
tween a node in an instantiated parse tree and its
label (i.e., an instantiated symbol).

Then, thew-instantiated grammarGw for G

andw is a CFG〈Nw,Tw,Pw, S0..|w|〉 such that:

1. Pw is defined as explained above;

2. Nw is a set of instantiated non terminal sym-
bols;

3. Tw is a set of instantiated terminal symbols.

It follows from the definition ofPw that (instan-
tiated) symbols ofGw have the following prop-
erties: Ai..j ∈ Nw ⇔ A

∗
⇒
G,w

ti+1 . . . tj, and

Ti..j ∈ Tw ⇔ T = tj .
Thew-instantiated CFGGw representsall parse

trees forw in a shared (factorized) way. It is the
grammar representation of the parse forest ofw

w.r.t. G.2 In fact, L(Gw) = {w} and the set
of parses ofw with respect toGw is isomorphic
to the set of parses ofw with respect toG, the
isomorphism being thew-instantiation operation.
The sizeof a forest is defined as the size of the
grammar that represents it, i.e., as the number of
symbol occurrences in this grammar, which is de-
fined as the number of productions plus the sum of
the lengths of all right-hand sides.

Example 1: First running example.
Let us illustrate these definitions by an example.

Given the sentencew = the boy saw a man with a
telescopeand the grammarG (that the reader has
in mind), the instantiated productions ofGw are:

Det0..1 → the0..1 N1..2 → boy1..2

NP0..2 → Det0..1 N1..2 V2..3 → saw2..3

Det3..4 → a3..4 N4..5 → man4..5

NP3..5 → Det3..4 N4..5 Prep5..6 → with5..6

Det6..7 → a6..7 N7..8 → telescope7..8

NP6..8 → Det6..7 N7..8 PP5..8 → Prep5..6 NP6..8

NP3..8 → NP3..5 PP5..8 VP2..8 → V2..3 NP3..8

VP2..5 → V2..3 NP3..5 VP2..8 → VP2..5 PP5..8

S0..8 → NP0..2 VP2..8

They represent the parse forest ofw according to
G. This parse forest contains two trees, since there
is one ambiguity: VP2..8 can be rewritten in two
different ways.

The instantiated grammarGw can be repre-
sented as an hypergraph (as in (Klein and Man-
ning, 2001) or (Huang and Chiang, 2005)) where
the instantiated symbols ofGw correspond to the
vertices of the hypergraph and the instantiated pro-
ductions to the hyperarcs.

We define theextensionof an instantiated sym-
bol Xi..j, notedE(Xi..j), as the set of instantiated
parse trees that haveXi..j as a root. The set of all
parse trees ofw w.r.t. G is thereforeE(S0..|w|). In
the same way, we define the extension of an in-
stantiated productionXi..j → α to be the subset

2In particular, ifG is a binary grammar, itsw-instantation
(i.e., the parse forest ofw) has a sizeO(|w|3), whereas it rep-
resents a potentially exponential number of parse trees w.r.t
|w| since we manipulate only non-cyclic grammars.

of E(Xi..j) that corresponds to derivations of the
form Xi..j ⇒

G,w
α

∗
⇒
G,w

ti+1 . . . tj (i.e., trees rooted

in Xi..j and where the daughters of the nodeXi..j

are the symbols ofα).

2.2 Forest traversals

Let us suppose that we deal with non-cyclic
forests, i.e., we only consider forests that are rep-
resented by a non-recursive instantiated CFG. In
this case, we can define two different kinds of for-
est traversals.

A bottom-up traversalof a forest is a traversal
with the following constraint: anAi..j-production
is visited if and only if all its instantiated right-
hand side symbols have already been visited; the
instantiated symbolAi..j is visited once allAi..j-
productions have been visited. The bottom-up
visit starts by visiting all instantiated productions
with right-hand sides that are empty or contain
only (instantiated) terminal symbols.

A top-down traversalof a forest is a traversal
with the following constraint: a nodeAi..j is vis-
ited if and only if all the instantiated productions
in which it occurs in right-hand side have already
been visited; once an instantiated productionAi..j

has been visited, all itsAi..j-productions are vis-
ited as well. Of course the top-down visit starts by
the visit of the axiomS0..|w|.

2.3 Ranked instantiated grammar

When an instantiated grammarGw =
〈Nw,Tw,Pw, S0..|w|〉 is built on a PCFG, ev-
ery parse tree inE(S0..|w|) has a probability that
is computed in the usual way (Booth, 1969). We
might be interested in extracting thekth most
likely tree of the forest represented byGw,3 with-
out unfoldingthe forest, i.e., without enumerating
trees. In order to do so, we need to add some
extra structure to the instantiated grammar. The
augmented instantiated grammar will be called a
ranked instantiated grammar.

This extra structure takes the form ofn-best ta-
blesthat are associated with each instantiated non
terminal symbol (Huang and Chiang, 2005), thus
leading toranked instantiated non terminal sym-
bols, or simplyinstantiated symbolswhen the con-
text is non ambiguous. A ranked instantiated non
terminal symbol is written〈Ai..j,T (Ai..j)〉, where

3In this paper, we shall use thekth most likely treeandthe
tree of rankk as synonyms.

T (Ai..j) is then-best table associated with the in-
stantiated symbolAi..j.

T (Ai..j) is a table of at mostn entries. The
k-th entry of the table, notede, describes how to
build the k-th most likely tree ofE(Ai..j). This
tree will be called thek-th extention ofAi..j, noted
Ek(Ai..j). More precisely,e indicates the instanti-
atedAi..j-productionp such thatEk(Ai..j) ∈ E(p).
It indicates furthermore which trees of the exten-
sions ofp’s right-hand side symbols must be com-
bined together in order to buildEk(Ai..j).

We also define them,n-extension ofAi..j as
follows: Em,n(Ai..j) = ∪m≤k≤nEk(Ai..j).

Example 2: n-best tables for the first running
example.

Let us illustrate this idea on our first running ex-
ample. Recall that in Example 1, the symbol VP2..8

can be rewritten using the two following produc-
tions :

VP2..8 → V2..3 NP3..8

VP2..8 → VP2..5 PP5..8

T (VP2..8) has the following form:

1 P1 VP2..8 → V2..3 NP3..8 〈1, 1〉 1

2 P2 VP2..8 → VP2..5 PP5..8 〈1, 1〉 1

This table indicates that the most likely tree
associated with VP2..8 (line one) has probability
P1 and is built using the production VP2..8 →
V2..3 NP3..8 by combining the most likely tree of
E(V2..3) (indicated by the first1 in 〈1, 1〉) with the
most likely tree ofE(NP3..8) (indicated by the sec-
ond 1 in 〈1, 1〉). It also indicates that the most
likely tree ofE(VP2..8) is the most likely tree of
E(VP2..8 → V2..3 NP3..8) (indicated by the pres-
ence of1 in the last column of entry1) and the
second most likely tree ofE(VP2..8) is the most
likely tree ofE(VP2..8 → VP2..5 PP5..8). This last
integer is called the local rank of the entry.

More formally, the entryT (Ai..j)[k] is defined
as a4-tuple 〈Pk, pk, ~vk, lk〉 wherek is the rank
of the entry, Pk is the probability of the tree
Ek(Ai..j), pk is the instantiated production such
that Ek(Ai..j) ∈ E(pk), ~vk is a tuple of|rhs(pk)|
integers andlk is the local rank.

The treeEk(Ai..j) is rooted byAi..j, and its
daughters rootN = |rhs(pk)| subtrees that are
E ~vk[1](rhs1(pk)), . . . , E ~vk [N](rhsN (pk)).

Given an instantiated symbolAi..j and an in-
stantitated productionp ∈ P (Ai..j), we define
the n-best table ofp to be the table composed

of the entries〈Pk, pk, ~vk, lk〉 of T (Ai..j) such that
pk = p.

Example 3: Second running example.
The following is a standard PCFG (probabili-

ties are shown next to the corresponding clauses).

S→ A B 1
A → A1 0.7 A1→ a 1
A → A2 0.3 A2→ a 1
B → B1 0.6 B1→ b 1
B → B2 0.4 B2→ b 1

The instantiation of the underlying (non-
probabilistic) CFG grammar by the input text
w = a b is the following.

S1..3 → A1..2 B2..3

A1..2 → A11..2 A11..2 → a1..2

A1..2 → A21..2 A21..2 → a1..2

B2..3 → B12..3 B12..3 → b2..3

B2..3 → B22..3 B22..3 → b2..3

This grammar represents a parse forest that con-
tains four different trees, since on the one hand one
can reach (parse) the instantiated terminal symbol
a1..2 throughA1 or A2, and on the other hand one
can reach (parse) the instantiated terminal sym-
bol b1..2 throughB1 or B2. Therefore, when dis-
cussing this example in the remainder of the paper,
each of these four trees will be named accordingly:
the tree obtained by reachinga throughAi and b

through Bj (i and j are 1 or 2) shall be called
Ti,j.

The correspondingn-best tables are trivial
(only one line) for all instantiated symbols but
A1..2, B2..3 and S1..3. That of A1..2 is the follow-
ing 2-line table.

1 0.7 A → A1 〈1〉 1

2 0.3 A → A2 〈1〉 1

Then-best table for B2..3 is similar. Then-best
table for S1..3 is:

1 0.42 S1..3 → A1..2 B2..3 〈1, 1〉 1

2 0.28 S1..3 → A1..2 B2..3 〈1, 2〉 2

3 0.18 S1..3 → A1..2 B2..3 〈2, 1〉 3

4 0.12 S1..3 → A1..2 B2..3 〈2, 2〉 4

Thanks to the algorithm sketched in section 2.4,
these tables allow to compute the following obvi-
ous result: the best tree isT1,1, the second-best
tree isT1,2, the third-best tree isT2,1 and the worst
tree isT2,2.

If n = 3, the pruned forest over-generates: all
instantiated productions take part in at least one
of the three best trees, and therefore the pruned

forest is the full forest itself, which contains four
trees.

We shall use this example later on so as to il-
lustrate both methods we introduce for building
forests that contain exactly then best trees, with-
out overgenerating.

2.4 Extracting the kth-best tree

An efficient algorithm for the extraction of then-
best trees is introduced in (Huang and Chiang,
2005), namely the authors’ algorithm 3, which
is a re-formulation of a procedure originally pro-
posed by (Jiménez and Marzal, 2000). Contrar-
ily to (Huang and Chiang, 2005), we shall sketch
this algorithm with the terminology introduced
above (whereas the authors use the notion of hy-
pergraph). The algorithm relies on then-best ta-
bles described above: extracting thekth-best tree
consists in extending then-best tables as much as
necessary by computing all lines in eachn-best ta-
ble up to those that concern thekth-best tree.4

The algorithm can be divided in two sub-
algorithms: (1) a bottom-up traversal of the for-
est for extracting the best tree; (2) a top-down
traversal for extracting thekth-best tree provided
the(k − 1)th-best has been already extracted.

The extraction of the best tree can be seen as a
bottom-up traversal that initializes then-best ta-
bles: when visiting a nodeAi..j, the best probabil-
ity of eachAi..j-production is computed by using
the tables associated with each of their right-hand
side symbols. The best of these probabilities gives
the first line of then-best table forAi..j (the result
for other productions are stored for possible later
use). Once the traversal is completed (the instanti-
ated axiom has been reached), the best tree can be
easily output by following recursively where the
first line of the axiom’sn-best table leads to.

Let us now assume we have extracted allk′-best
trees,1 ≤ k′ < k, for a givenk ≤ n. We want
to extract thekth-best tree. We achieve this recur-
sively by a top-down traversal of the forest. In or-
der to start the construction of thekth-best tree, we
need to know the following:

• which instantiated productionp must be used
for rewriting the instantiated axiom,

4In the remainder of this paper, we shall use “extracting
thek

th-best tree” as a shortcut for “extending then-best ta-
bles up to what is necessary to extract thek

th-best tree” (i.e.,
we do not necessarily really build or print thek

th-best tree).

• for each ofp’s right-hand side symbolsAi..j,
which subtree rooted inAi..j must be used;
this subtree is identified by itslocal rank
kAi..j

, i.e., the rank of its probability among
all subtrees rooted inAi..j.

This information is given by thekth line of then-
best table associated with the instantiated axiom.
If this kth line has not been filled yet, it is com-
puted recursively.5 Once thekth line of then-best
table is known, i.e.,p and allkAi..j

’s are known,
the rankk is added top’s so-calledrankset, noted
ρ(p). Then, the top-down traversal extracts recur-
sively for eachAi..j the appropriate subtree as de-
fined by kAi..j

. After having extracted then-th
best tree, we know that a given productionp is in-
cluded in thekth-best tree,1 ≤ k ≤ n, if and only
if k ∈ ρ(p).

3 Computing sub-forests that only
contain then best trees

Given a ranked instantiated grammarGw, we are
interested in building a new instantiated grammar
which contains exactly then most likely trees of
E(Gw). In this section, we introduce two algo-
rithms that compute such a grammar (or forest).
Both methods rely on the construction of new
symbols, obtained by decorating instantiated sym-
bols ofGw.

An empirical comparison of the two methods is
described in section 4. In order to evaluate the
size of the new constructed grammars (forests),
we consider as a lower bound the so-calledpruned
forest, which is the smallest sub-grammar of the
initial instantiated grammar that includes then
best trees. It is built simply by pruning produc-
tions with an empty rankset: no new symbols
are created, original instantiated symbols are kept.
Therefore, it is a lower bound in terms of size.
However, the pruned forest usually overgenerates,
as illustrated by Example 3.

5Because thek − 1th-best tree has been computed, thisn-
best table is filled exactly up to linek−1. Thek

th line is then
computed as follows: while constructing thek′th-best trees
for eachk′ between1 andk−1, we have identified many pos-
sible rewritings of the instantiated axiom, i.e., many (produc-
tion, right-hand side local ranks) pairs; we know the proba-
bility of all these rewritings, although only some of them con-
situte a line of the instantiated axiom’sn-best table; we now
identify new rewritings, starting from known rewritings and
incrementing only one of their local ranks; we compute (re-
cursively) the probability of these newly identified rewritings;
the rewriting that has the best probability among all those that
are not yet a line of then-best table is then added: it is itsk

th

line.

3.1 The ranksets method

The algorithm described in this section builds an
instantiated grammarGn

w by decorating the sym-
bols of Gw. The new (decorated) symbols have
the formA

ρ
i..j whereρ is a set of integers called

a rankset. An integer r is a rank iff we have
1 ≤ r ≤ n.

The starting point of this algorithm is set ofn-
best tables, built as explained in section 2.4, with-
out explicitely unfolding the forest.

A preliminary top-down step uses thesen-best
tables for building a parse forest whose non-
terminal symbols (apart from the axiom) have the
form A

ρ
i..j whereρ is a singleton{r}: the sub-

forest rooted inA{r}
i..j contains only one tree, that

of local rankr. Only the axiom is not decorated,
and remains unique. Terminal symbols are not af-
fected either.

At this point, the purpose of the algorithm is to
merge productions with identical right-hand sides,
whenever possible. This is achieved in a bottom-
up fashion as follows. Consider two symbolsA

ρ1

i..j

and A
ρ2

i..j, which differ only by their underlying
ranksets. These symbols correspond to two dif-
ferent production sets, namely the set of allA

ρ1

i..j-
productions (resp. Aρ2

i..j-productions). Each of
these production sets define a set of right-hand
sides. If these two right-hand side sets are iden-
tical we say thatAρ1

i..j andA
ρ2

i..j areequivalent. In
that case introduce the ranksetρ = ρ1 ∪ ρ2 and
create a new non-terminal symbolA

ρ
i..j. We now

simply replace all occurrences ofA
ρ1

i..j and A
ρ2

i..j

in left- and right-hand sides byAρ
i..j. Of course

(newly) identical productions are erased. After
such a transformation, the newly created symbol
may appear in the right-hand side of productions
that now only differ by their left-hand sides; the
factorization spreads to this symbol in a bottom-
up way. Therefore, we perform this transforma-
tion until no new pair of equivalent symbols is
found, starting from terminal leaves and percolat-
ing bottom-up as far as possible.

Example 4: Applying the ranksets method to
the second running example.

Let us come back to the grammar of Example 3,
and the same input textw = a b as before. As
in Example 3, we consider the case when we are
interested in then = 3 best trees.

Starting from the instantiated grammar and the
n-best tables given in Example 3, the preliminary
top-down step builds the following forest (for clar-

ity, ranksets have not been shown on symbols that
root sub-forests containing only one tree):

S1..3 → A{1}
1..2 B{1}

2..3

S1..3 → A{1}
1..2 B{2}

2..3

S1..3 → A{2}
1..2 B{1}

2..3

A{1}
1..2 → A11..2 A11..2 → a1..2

A{2}
1..2 → A21..2 A21..2 → a1..2

B{1}
2..3 → B12..3 B12..3 → b2..3

B{2}
2..3 → B22..3 B22..3 → b2..3

In this example, the bottom-up step doesn’t fac-
torize out any other symbols, and this is therefore
the final output of the ranksets method. It con-
tains 2 more productions and 3 more symbols than
the pruned forest (which is the same as the origi-
nal forest), but it contains exactly the 3 best trees,
contrarily to the pruned forest.

3.2 The rectangles method

In this section only, we assume that the grammar
G is binary (and therefore the forest, i.e., the gram-
mar Gw, is binary). Standard binarization algo-
rithms can be found in the litterature (Aho and Ull-
man, 1972).

The algorithm described in this section per-
forms, as the preceding one, a decoration of the
symbols ofGw. The new (decorated) symbols
have the formA

x,y
i..j , wherex andy denote ranks

such that1 ≤ x ≤ y ≤ n. The semantics of the
decoration is closely related to thex, y extention
of Ai..j, introduced in 2.3:

E(Ax,y
i..j) = Ex,y(Ai..j)

It corresponds to ranksets (in the sense of the
previous section) that are intervals:A

x,y
i..j is equiv-

alent to the previous section’sA{x,x+1,...,y−1,y}
i..j . In

other words, the sub-forest rooted withA
x,y
i..j con-

tains exactly the trees of the initial forest, rooted
with Ai..j, which rank range fromx to y.

The algorithm performs a top-down traversal of
the initial instantiated grammarGw. This traver-
sal also takes as input two parametersx andy. It
starts with the symbolS0..|w| and parameters1 and
n. At the end of the traversal, a new decorated for-
est is built which contains exactlyn most likely
the parses. During the traversal, every instantiated
symbolAi..j will give birth to decorated instanti-
ated symbols of the formAx,y

i..j wherex andy are

determined during the traversal. Two different ac-
tions are performed depending on whether we are
visiting an instantiated symbol or an instantiated
production.

3.2.1 Visiting an instantiated symbol

When visiting an instantiated symbolAi..j with
parametersx and y, a new decorated instan-
tiated symbol Ax,y

i,j is created and the traver-
sal continues on the instantiated productions of
P (Ai..j) with parameters that have to be com-
puted. These parameters depend on how the el-
ements ofEx,y(Ai..j) are “distributed” among the
setsE(p) with p ∈ P (Ai..j). In other words, we
need to determinexk ’s andyk’s such that:

Ex,y(Ai..j) =
⋃

pk∈P (Ai..j)

Exk,yk
(pk)

The idea can be easily illustrated on an exam-
ple. Suppose we are visiting the instantiated sym-
bol Ai..j with parameters5 and10. Suppose also
that Ai..j can be rewritten using the two instanti-
ated productionsp1 andp2. Suppose finally that
the5 to 10 entries ofT (Ai..j) are as follows6:

5 p1 4

6 p2 2

7 p2 3

8 p1 5

9 p2 4

10 p1 6

This table says thatE5(Ai..j) = E4(p1) i.e. the
5th most likely analysis ofE(Ai..j) is the4th most
likely analysis ofE(p1) andE6(Ai..j) = E2(p2)
and so on. From this table we can deduce that:

E5,10(Ai..j) = E4,6(p1) ∪ E2,4(p2)

The traversal therefore continues onp1 andp2

with parameters4, 6 and2, 4.

3.2.2 Visiting an instantiated production

When visiting an instantiated productionp of the
form Ai..j → Bi..l Cl..j with parametersx andy,
a collection ofq instantiated productionspr of the

form A
x,y
i..j → B

x1
r,x2

r

i..l C
y1

r ,y2
r

l..j , with 1 ≤ r ≤ q,
are built, where the parametersx1

r, x
2
r , y

1
r , y

2
r and

q have to be computed.
Once the parametersq and x1

r, x
2
r , y

1
r , y

2
r with

1 ≤ r ≤ q, have been computed, the traversal

6Only the relevant part of the table have been kept in the
figure.

continues independently onBi..l with parameters
x1

r andx2
r and onCl..j with parametersy1

r andy2
r .

The computation of the four parameters
x1

r, x
2
r , y

1
r andy2

r for 1 ≤ r ≤ q, is the most com-
plex part of the algorithm, it relies on the three
notions ofrectangles, q-partitionsandn-best ma-
trices, which are defined below.

Given a 4-tuple of parametersx1
r , x

2
r, y

1
r , y

2
r ,

a rectangle is simply a pairing of the form
〈〈x1

r , x
2
r〉, 〈y

1
r , y

2
r 〉〉. A rectangle can be interpreted

as a couple of rank ranges :〈x1
r , y

1
r 〉 and〈x2

r , y
2
r〉.

It denotes the cartesian product
[

x1
r, x

2
r

]

×
[

y1
r , y

2
r

]

.
Let 〈〈x1

1, x
2
1〉, 〈y

1
1 , y

2
1〉〉, . . . , 〈〈x

1
q , x

2
q〉, 〈y

1
q , y

2
q 〉〉

be a collection ofq rectangles. It will be called a
q-partition of the instantiated productionp iff the
following is true:

Ex,y(p) =
⋃

1≤r≤q

E(Ax,y
i..j → B

x1
r,x2

r

i..l C
y1

r ,y2
r

l..j)

To put it differently, this definition means that
〈〈x1

1, x
2
1〉, 〈y

1
1 , y

2
1〉〉, . . . , 〈〈x

1
q , x

2
q〉, 〈y

1
q , y2

q〉〉 is a q

partition of p if any tree ofE(B
x1

r,x2
r

i..l) combined

with any tree ofE(C
y1

r ,y2
r

l..j) is a tree ofEx,y(p) and,
conversely, any tree ofEx,y(p) is the combination

of a tree ofE(B
x1

r,x2
r

i..l) and a tree ofE(C
y1

r ,y2
r

l..j).
The n-best matrixassociated with an instanti-

ated productionp, introduced in (Huang and Chi-
ang, 2005), is merely a two dimensional represen-
tation of then-best table ofp. Such a matrix, rep-
resents how then most likely trees ofE(p) are
built. An example of ann-best matrix is repre-
sented in figure 1. This matrix says that the first
most likely tree ofp is built by combining the
treeE1(Bi..l) with the treeE1(Cl..j) (there is a1
in the cell of coordinate〈1, 1〉). The second most
likely tree is built by combining the treeE1(Bi..l)
andE2(Cl..j) (there is a2 in the cell of coordinate
〈1, 2〉) and so on.

An n-best matrixM has, by construction, the
remarkable following properties:

M(i, y) < M(x, y) ∀i 1 ≤ i < x

M(x, j) < M(x, y) ∀j 1 ≤ j < y

Given ann-best matrixM of dimensionsd =
X · Y and two integersx andy such that1 ≤ x <

y ≤ d, M can be decomposed into three regions:

• the lower region, composed of the cells
which contain ranksi with 1 ≤ i < x

• the intermediate region, composed of the
cells which contain ranksi with x ≤ i ≤ y

1 2

3

4

6

7

8

9

10

11

12

13

14 15

16

17

18

20 21

23

5

24

26

2 3 5 6

2

3

4

5

6

19

41

1

22 2725

28

29

30

31 32 34

33

35

36

Cl..j

Bi..l

Figure 1:n-best matrix

• the upper region, composed of the cells
which contain ranksi such thaty < i ≤ d.

The three regions of the matrix of figure 1, for
x = 4 andy = 27 have been delimited with bold
lines in figure 2.

1 2

3

4

6

7

8

9

10

11

12

13

14 15

16

17

18

20 21

23

5

24

26

2 3 5 6

2

3

4

5

6

19

41

1

22 2725

28

29

30

31 32 34

33

35

36

Bi..l

Cl..j

Figure 2: Decomposition of ann-best matrix into
a lower, an intermediate and an upper region with
parameters4 and27.

It can be seen that a rectangle, as introduced
earlier, defines asub-matrixof then-best matrix.
For example the rectangle〈〈2, 5〉, 〈2, 5〉〉 defines
the sub-matrix which north west corner isM(2, 2)
and south east corner isM(5, 5), as represented in
figure 3.

When visiting an instantiated productionp, hav-
ing M as ann-best matrix, with the two parame-
tersx andy, the intermediate region ofM , with
respect tox andy, contains, by definition, all the
ranks that we are interested in (the ranks rang-
ing from x to y). This region can be partitioned
into a collection of disjoint rectangular regions.
Each such partition therefore defines a collection
of rectangles or aq-partition.

The computation of the four parameters
x1

r, y
1
r , x

2
r andy2

r for an instantiated productionp

9

10

11

12

13

17

18

20 21

5

24

26

2 5

2

5 19 22 2725

Cl..j

Bi..l

Figure 3: The sub-matrix corresponding to the
rectangle〈〈2, 5〉, 〈2, 5〉〉

therefore boils down to the computation of a parti-
tion of the intermediate region of then-best matrix
of p.

We have represented schematically, in figure 4,
two 4-partitions and a3-partition of the interme-
diate region of the matrix of figure 2. The left-
most (resp. rightmost) partition will be called the
vertical (resp. horizontal) partition. The middle
partition will be called an optimal partition, it de-
composes the intermediate region into a minimal
number of sub-matrices.

���
���
���

���
���
���

III

IV

I

II

���
���
���

���
���
���

I

III

II

���
���
���

���
���
���

II

I

III

IV

Figure 4: Three partitions of ann-best matrix

The three partitions of figure 4 will give birth to
the following instantiated productions:

• Vertical partition

A
4,27
i..j → B

3,6
i..l C

1,1
l..j A

4,27
i..j → B

2,5
i..l C

2,2
l..j

A
4,27
i..j → B

1,5
i..l C

3,5
l..j A

4,27
i..j → B

1,1
i..l C

6,6
l..j

• Optimal partition

A
4,27
i..j → B

1,1
i..l C

3,6
l..j A

4,27
i..j → B

2,5
i..l C

2,5
l..j

A
4,27
i..j → B

3,6
i..l C

1,1
l..j

• Horizontal partition

A
4,27
i..j → B

1,1
i..l C

3,6
l..j A

4,27
i..j → B

2,2
i..l C

2,5
l..j

A
4,27
i..j → B

3,5
i..l C

1,5
l..j A

4,27
i..j → B

6,6
i..l C

1,1
l..j

Vertical and horizontal partition of the interme-
diate region of an-best matrix can easily be com-
puted. We are not aware of an efficient method that
computes an optimal partition. In the implemen-
tation used for experiments described in section 4,
a simple heuristic has been used which computes
horizontal and vertical partitions and keeps the
partition with the lower number of parts.

The size of the new forest is clearly linked to
the partitions that are computed: a partition with
a lower number of parts will give birth to a lower
number of decorated instantiated productions and
therefore a smaller forest. But this optimization
is local, it does not take into account the fact that
an instantiated symbol may be shared in the initial
forest. During the computation of the new forest,
an instantiated productionp can therefore be vis-
ited several times, with different parameters, and
several partitions ofp be computed. If a rectan-
gle is shared by several partitions, this will tend to
decrease the size of the new forest. The global op-
timal must therefore take into account all the par-
titions of an instantiated production that are com-
puted during the construction of the new forest.

Example 5: Applying the rectangles method to
the second running example.

We now illustrate more concretely the rectan-
gles method on our second running example intro-
duced in Example 3. Let us recall that we are in-
terested in then = 3 best trees, the original forest
containing 4 trees.

As said above, this method starts on the instan-
tiated axiom S1..3. Since it is the left-hand side
of only one production, this production is visited
with parameters1, 3. Moreover, itsn-best table is
the same as that of S1..3, given in Example 3. We
show here the correspondingn-best matrix, with
the empty lower region, the intermediate region
(cells corresponding to ranks 1 to 3) and the upper
region:

4

1 2

3

2

2

1

1A1..2

B2..3

As can be seen on that matrix, there are two op-
timal 2-partitions, namely the horizontal and the
vertical partitions, illustrated as follows:

II
I

II I

Let us arbitrarily chose the vertical partition. It
gives birth to twoS 1..3-productions, namely:

S
1,3
1..3 → A

1,2
1..2 B

1,1
2..3

S
1,3
1..3 → A

1,1
1..2 B

2,2
2..3

Since this is the only non-trivial step while apply-
ing the rectangles algorithm to this example, we
can now give its final result, in which the axiom’s
(unnecessary) decorations have been removed:

S1..3 → A1,2
1..2 B{1,1}

2..3

S1..3 → A1,1
1..2 B{2,2}

2..3

A1,2
1..2 → A11..2 A11..2 → a1..2

A1,2
1..2 → A21..2 A21..2 → a1..2

B1,2
2..3 → B12..3 B12..3 → b2..3

B2,2
2..3 → B22..3 B22..3 → b2..3

Compared to the forest built by the ranksets algo-
rithm, this forest has one less production and one
less non-terminal symbol. It has only one more
production than the over-generating pruned for-
est.

4 Experiments on the Penn Treebank

The methods described in section 3 have been
tested on a PCFGG extracted from the Penn Tree-
bank (Marcus et al., 1993).G has been extracted
naively: the trees have been decomposed into bi-
nary context free rules, and the probability of ev-
ery rule has been estimated by its relative fre-
quency (number of occurrences of the rule divided
by the number of occurrences of its left hand side).
Rules occurring less than3 times and rules with
probabilities lower than3× 10−4 have been elim-
inated. The grammar produced contains932 non
terminals and3, 439 rules.7

The parsing has been realized using the SYN-
TAX system which implements, and optimizes, the
Earley algorithm (Boullier, 2003).

The evaluation has been conducted on the1, 845
sentences of section1, which constitute our test

7We used this test set only to generate practical NLP
forests, with a real NLP grammar, and evaluate the perfor-
mances of our algorithms for constucting sub-forests that
contain only then-best trees, both in terms of compression
rate and execution time. Therefore, the evaluation carriedout
here has nothing to do with the usual evaluation of the pre-
cision and recall of parsers based on the Penn Treebank. In
particular, we are not interested here in the accuracy of such
a grammar, its only purpose is to generate parse forests from
whichn-best sub-forests will be built.

0e+00

1e+05

2e+05

3e+05

4e+05

5e+05

6e+05

7e+05

8e+05

9e+05

 0 100 200 300 400 500 600 700 800 900 1000

a
v
g
.

n
b

o
f

t
r
e
e
s

i
n

t
h
e

p
r
u
n
e
d

f
o
r
e
s
t

n

Figure 5: Overgeneration of the prunedn-best forest

 1

 10

 100

 1000

 1 10 100 1000

c
o
m
p
r
e
s
s
i
o
n

r
a
t
e

n

pruned forest
rectangles
ranksets

Figure 6: Average compression rates

set. For every sentence and for increasing values
of n, ann-best sub-forest has been built using the
rankset and the rectangles method.

The performances of the algorithms have been
measured by the averagecompression ratethey
achieve for different values ofn. The compres-
sion rate is obtained by dividing the size of the

n-best sub-forest of a sentence, as defined in sec-
tion 2, by the size of the (unfolded)n-best forest.
The latter is the sum of the sizes of all trees in the
forest, where every tree is seen as an instantiated
grammar, its size is therefore the size of the corre-
sponding instantiated grammar.

 0

 200

 400

 600

 800

 1000

 1200

 5 10 15 20 25 30 35 40 45

t
i
m
e

i
n

m
i
l
l
i
s
e
c
o
n
d
s

sentence length

parsing
ranksets

rectangles

Figure 7: Processing time

The size of then-best forest constitutes a natu-
ral upper bound for the representation of then-best
trees. Unfortunately, we have no natural lower
bound for the size of such an object. Neverthe-
less, we have computed the compression rates of
the prunedn-best forest and used it as an imperfect
lower bound. As already mentioned, its imper-
fection comes from the fact that a prunedn-best
forest contains more trees than then best ones.
This overgeneration appears clearly in Figure 5
which shows, for increasing values ofn, the av-
erage number of trees in then-best pruned forest
for all sentences in our test set.

Figure 6 shows the average compression rates
achieved by the three methods (forest pruning,
rectangles and ranksets) on the test set for increas-
ing values ofn. As predicted, the performances lie
between1 (no compression) and the compression
of then-best pruned forest. The rectangle method
outperforms the ranksets algorithm for every value
of n.

The time needed to build an100-best forest with
the rectangle and the ranksets algorithms is shown
in Figure 7. This figure shows the average parsing
time for sentences of a given length, as well as the
average time necessary for building the100-best
forest using the two aforementioned algorithms.
This time includes the parsing time i.e. it is the
time necessary for parsing a sentence and build-

ing the100-best forest. As shown by the figure,
the time complexities of the two methods are very
close.

5 Conclusion and perspectives

This work presented two methods to buildn-
best sub-forests. The so called rectangle meth-
ods showed to be the most promising, for it al-
lows to build efficient sub-forests with little time
overhead. Future work will focus on computing
optimized partitions of then-best matrices, a cru-
cial part of the rectangle method, and adapting the
method to arbitrary (non binary) CFG. Another
line of research will concentrate on performing
re-ranking of then-best trees directly on the sub-
forest.

Acknowledgments

This research is supported by the French National
Research Agency (ANR) in the context of the
SEQUOIA project (ANR-08-EMER-013).

References

Alfred V. Aho and Jeffrey D. Ullman. 1972.The
Theory of Parsing, Translation, and Compiling, vol-
ume 1. Prentice-Hall, Englewood Cliffs, NJ.

Taylor L. Booth. 1969. Probabilistic representation of
formal languages. InTenth Annual Symposium on
Switching and Automata Theory, pages 74–81.

Pierre Boullier and Philippe Deschamp. 1988.
Le système SYNTAX TM - manuel d’utilisation.
http://syntax.gforge.inria.fr/syntax3.8-manual.pdf.

Pierre Boullier and Benot Sagot. 2005. Efficient and
robust LFG parsing: SXLFG. In Proceedings of
IWPT’05, Vancouver, Canada.

Pierre Boullier. 2003. Guided Earley parsing. InPro-
ceedings of IWPT’03, pages 43–54.

Jay Earley. 1970. An efficient context-free parsing
algorithm. Communication of the ACM, 13(2):94–
102.

Liang Huang and David Chiang. 2005. Better k-best
parsing. InProceedings of IWPT’05, pages 53–64.

Liang Huang. 2008. Forest reranking: Discriminative
parsing with non-local features. InProceedings of
ACL’08, pages 586–594.

Vı́ctor M. Jiménez and Andrés Marzal. 2000. Com-
putation of the n best parse trees for weighted and
stochastic context-free grammars. InProceedings
of the Joint IAPR International Workshops on Ad-
vances in Pattern Recognition, pages 183–192, Lon-
don, United Kingdom. Springer-Verlag.

Dan Klein and Christopher D. Manning. 2001. Parsing
and hypergraphs. InProceedings of IWPT’01.

Bernard Lang. 1974. Deterministic techniques for ef-
ficient non-deterministic parsers. In J. Loeckx, ed-
itor, Proceedings of the Second Colloquium on Au-
tomata, Languages and Programming, volume 14 of
Lecture Notes in Computer Science, pages 255–269.
Springer-Verlag.

Bernard Lang. 1994. Recognition can be harder then
parsing.Computational Intelligence, 10:486–494.

Mitchell P. Marcus, Beatrice Santorini, and Mary Ann
Marcinkiewicz. 1993. Building a large annotated
corpus of English: The Penn treebank.Computa-
tional Linguistics, 19(2):313–330, June.

Haitao Mi, Liang Huang, and Qun Liu. 2008. Forest-
based translation. InProceedings of ACL-08: HLT,
pages 192–199.

